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Abstract

Local solutions of unbounded static and harmonic problems are obtained using a variational
formulation of the partial differential equations, with the trial functions constrained by the

integral equations for the exterior field.

Introduction

Differential methods (eg. finite difference or

finite element) for the solution of partial differen-
tial equations (P.D.E.), are very useful in small,

closed regions. For unbounded regions,an integral

equation (I. E.) formulation , which may be viewed as an
“action-at-a-distance” method, is often most useful.
In problems where the spatial dimensions are large, but

where local “picture-frame” snapshots of the field are
required it is useful to combine the P.D.E. techniques

with the I.E. formulations. One may treat each picture
frame as a closed, small region and solve the field
therein using a P.D.E. method, with the I.E. used: (a)
to represent the field outside the picture-frames; and

(b) to link the picture-frames one to another. The I.E.
may also be used to link the picture-frames to far

field conditions, such as l/r dependence at large dis-

tances.

Theoretical Considerations and Previous Work

To see how a picture-frame P.D.E. solution can be

coupled to an I.E. formulation one may consider the

simple configuration in Figure 1.

The problem in words is: given a potential on the
boundary S of a conductor find the field in all
space exter~al to S . If this boundary potential is

static, the P.D.E. t8 be solved is Laplace’s, if the
potential is harmonic, a Helmholtz operator must be

cons idered.

The contour is chosen as the boundary of the
~h:zfield between s

picture-frame. and S is to be

obtained using a P.D.E. method, but ~dditio?al informa-
tion is required, namely the boundary condition on S2.

Another contour, labelled S , is chosen as shown

in Figure 1. The field exterior%o S1 is obtained

using an I.E. formulation. For Laplace’s equation, in
two dimensions, one may write:

$(p) =

1

G(PIP’) #ls ds’

‘1
1

(1)

where:

G(p\p’) = - ~ln 1P’ -PI (2)

The virtual source distribution on S ,

&
from

equation (1) is 3@/3nlS1J and is, in fac , a function

of the solution of the P.D.E. method indicated above.
In particular, point p may be taken to be on S ,

?giving a linear relationship between the field va ues

on which relates the picture-frame solu-
tions$oa~~es?kounded regicm. Similar arguments hold
for the Helmholtz operator.

Clearly, this discussion is not restricted to only

one picture-frame. As many snapshots as required may
be obtained, provided that the contour S1 is suitably

chosen, with ‘ cuts’ between picture-frames, so that
‘1

becomes a single closed contour in each picture-frame,

with the direction of integration fixed by the ‘cuts’ .

When the picture-frame solutions are available,

the field is known in all space, since equation (1) may

be applied then for any point p in all space exterior
to

‘1 “

Several related schemes have recently been report-
ed, which, in the main: (a) have used finite differ-

ences for the picture-frame solution; (b) have been
restricted to one picture-frame; (c) have been restric-
ted tn Laplace’s equation; and (d) have had to copewitb

singularities of Green’s functions [1].

Silvester and Cermak [2]-[3], in effect, choose S

to coincide with S2 (within one grid point in the 1
finite difference representation). A potential shift

operator is used to eliminate the &+/3n term in equa-

tion (l). The resulting finite difference problem is

solved by successive over-relaxation (S.O.R. ). Since

S and S are virtually coincident, the singularity of
~eGree?’s function occurring in equation (l) must be
taken care of.

More recently Silvester and Hsieh [4] have applied
finite elements, using a functional which effectively

minimizes the energy in all space, including that ex-
terior to

‘2.
This approach seems to be restricted to

the Laplace operator (where total energy is finite) ,

and the problem of singularity in the Green’s function
remains.

Sandy and Sage [5], in effect, choose S
along the boundary of the conductor, an/luZ ;;so r
iterative procedure to select the correct potentials

for S2. Problems with singularities in the Green’s
function do not occur since potentials are not evalua-

ted at source points. Problems can arise with conver-

gence, and also, the computing time can be high due to

the iterative procedures involved (including S.O.R. ).

Also , if any media inhomogeneities appear between
and S2,

‘1
equation (1) becomes somewhat more involved.

Greenspan and Werner 161 discuss a finite differ-
ence approach for the Helmholtz operator, and show that

solutions do exist, are unique, and can be numerically

obtained. The contour S
i

is taken coincident with S2,
yielding singularity prob ems. Special functions are
fOund to represent a Dirichlet boundary condition On SY

and an error analysis is given.

The Present Scheme

The present scheme was designed: (a) to avoid sin-

gularities in the Green’s functions; (b) to use the
simplest form of the integral equations; (c) to handle

inhomogeneous and anisotropic media (possible with

existing finite element software); and (d) to avoid
iterative procedures.
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The picture-frame boundary ‘2
and the contour

s
1.

are both chosen to include all inhomogeneities and
anlsotropies. The contour S

A
is chosen to lie well

within the picture-frame boun ary S , thus sidestep-
ping the singularity problem of the &een’s function.

Since field values on both S1 and S2 are described by
the trial functions of the finite element schae, equa-

tion (1) provides the linear constraint which completes

the P.D.E. solution.

Examples

Results are given for three simple experiments,

demonstrating the scheme, andgiving some indication of

its potential.

For these examples, the z–directed electric vector

potential is used [71, yielding equipotential lines of
the contours being in the same direction as the

~f’e;tric field.

Figure 3 shows a plot of equipotential contours
for a static problem with two conducting plates (infi-
nite in the z-direction) with a line dipole source
connected across the plates at X=o.

Figure 4 shows the real part of the solution ob-
eained (for the configuration of Figure 3), for the
source at zero phase at 19 GHz.

Figure 5 shows the real part of the solution for
an antenna type problen, with dielectric obstacles.
Here the plot is for the source at zero phase at 5 GHz.
Here two separate picture-frames are used, with a less
accurate second order polynomial approximation.

The illustrations are the same as plots obtained

by solving the basic finite element problem with “cor-
rect” (Dirichlet) potentials specified at the picture-

frame boundaries. In these examples, however, no
Dirichlet potentials were specified, the linear condi-
tions were obtained from the I.E. formulation, equation

(1) .

The picture-frames are clearly snapshots of the

entire field. Theoretically, the borders of the pic-
ture-frames are transparent to the final solutions. In

practice, however, errors do occur. But the error at

the picture-frame boundary is no worse than the error

at any triangle interface.

More than one picture-frame may be used, and the
solution is continuous in each picture-frame, and
between them.

The scheme is clearly applicable to complicated

microstrip problems, e.g. , the coupling of adjacent

microstrip lines. A microstrip example will be present-
ed.

Computer times are within thirty percent of the
above-mentioned basic finite-element solution of the
equivalent, specified, Dirichlet problem. Accuracy
depends upon the numerical methods for integrating
equation (1) , and also upon the parameters affecting
finite-element solutions, namely the size, and number
of elements, and the order of the polynomial trial
functions.

Conclusions

The present scheme permits placement of picture-
frames in regions where detailed analysis is required,

and saves work and computer storage for the rcroaining

“empty space”. Nevertheless the solution anywhere can
be constructed from the picture-frame solutions using

a Green’s function integration. The software at hand
permits analysis of inhomogeneoue and anisotxopic
regions, when these can all be placed in picture-fram~
Of great algorithmic convenience is the fact that the
problem of singularity of the Green’s function is side

stepped by not evaluating potentials at source points.
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FIG. 1 ‘THE PICTURE-FRAME AND ASSOCIATED CONTOURS

\

FIG. 3 A HARMONIC CAPACITOR SOLUTION, GEOMETRY AS IN

FIGURE 3, USING ONE PICTURE-FRANE
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FIG. 2 A STATIC CAPACITOR PROBLEM 2ND SOLUTION USING

ONE PICTURE-FRAME

n

FIG. 4 AN ANTENNA PROBLEM WITH DIELECTRIC OBSTACLES

AND SOLUTION USING TWO PICTURE-FRAMES
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