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Abstract

Local solutions of unbounded static and harmonic problems are obtained using a wariational
formulation of the partial differential equations, with the trial functions congtrained by the

integral equations for the exterior field.
Introduction

Differential methods {(eg. finite difference or
finite element) for the solution of partial differen-
tial equations (P.D.E.), are very useful in small,
closed regions. For unbounded regions, an integral
equation (I.E.) formulation, which may be viewed as an
"action-at~a-distance" method, is often most useful.

In problems where the spatial dimensions are large, but
where local "picture-frame” snapshots of the field are
required it is useful to combine the P.D.E. techniques
with the I.E. formulations. One may treat each picture
frame as a closed, small region and solve the field
therein using a P.D.E. method, with the I.E. used: (a)
to represent the field outside the picture-frames; and
(b) to link the picture-frames one to another. The I.E.
may also be used to link the picture~frames to far
field conditions, such as 1/r dependence at large dis-
tances.

Theoretical Considerations and Previous Work

To see how a picture-frame P.D.E. solution can be
coupled to an I.E. formulation one may consider the
simple configuration in Figure 1.

The problem in words is: given a potential on the
boundary S of a conductor find the field in all
space external to S . If this boundary potential is
static, the P.D.E. €3 be solved is Laplace's, if the
potential is harmonic, a Helmholtz operator must be
considered.

The contour S is chosen as the boundary of the
picture~frame. The field between S and S is to be
obtained using a P.D.E. method, but gdditional informa~-
tion is required, namely the boundary condition on 52.

Another contour, labelled S,, is chosen as shown
in Figure 1. The field exterior to S is obtained
using an I.E. formulation. For Laplace's equation, in
two dimensions, one may write:

dip) = clplp") g—i as' (1)
s
S; 1
where:
cplp) = - = 1n |p' - p| (2)
2m

The virtual source distribution on S.,, from
equation (1) is 3¢/8nls , and is, in fac%, a function
of the solution of the PVD.E. method indicated above.
In particular, point p may be taken to be on S_,
giving a linear relationship between the field vafues
on S, and S, which relates the picture~frame solu-
tion o the unbounded region. Similar arguments hold
for the Helmholtz operator.

Clearly, this discussion is not restricted to only
one picture-frame. As many snapshots as required may

be obtained, provided that the contour Sl is suitably

chosen, with 'cuts' between picture-frames, so that S
becomes a single closed contour in each picture-frame,
with the direction of integration fixed by the 'cuts'.

When the picture-frame solutions are available,
the field is known in all space, since equation (1) may
be applied then for any point p in all space exterior
to S..

1

Several related schemes have recently been report-
ed, which, in the main: (a) have wused finite differ-
ences for the picture-frame solution; (b) have been
restricted to one picture-frame; (c) have been restric-
ted to Laplace's equation; and (d) have had to cope with
singularities of Green's functionz [1].

Silvester and Cermak [2]~[3], in effect, choose S
to coincide with S (within one grid point in the
finite difference répresentation). A potential shift
operator is used to eliminate the 9¢/0n term in equa-
tion (1). The resulting finite difference problem is
solved by successive over-relaxation (S.0.R.). Since
S. and S, are virtually coincident, the singularity of
tﬁe Greeii's function occurring in equation (1) must be
taken care of.

More recently Silvester and Hsieh [4] have applied
finite elements, using a functional which effectively
minimizes the energy in all space, including that ex-
terior to S,. This approach seems to be restricted to
the Laplace operator (where total energy is finite),
and the problem of singularity in the Green's function
remains.

Sandy and Sage [5], in effect, choose S to lie
along the boundary of the conductor, Sg, ané use an
iterative procedure to select the correct potentials
for S5. Problems with singularities in the Green's
function do not occur since potentials are not evalua-
ted at source points. Problems can arise with conver-
gence, and also, the computing time can be high due to
the iterative procedures involved (including S.0.R.).
Also, if any media inhomogeneities appeaxr between S
and Sz, equation (1) becomes somewhat more involved,

Greenspan and Werner [6] discuss a finite differ-
ence approach for the Helmholtz operator, and show that
solutions do exist, are unique, and can be numerically
obtained. The contour S is taken coincident with S,
yielding singularity probiems. Special functions are
found to represent a Dirichlet boundary condition on SZ
and an error analysis is given.

The Present Scheme

The present scheme was designed: (a) to avoid sin-
gularities in the Green's functions; (b) to use the
simplest form of the integral equations; (c¢) to handle
inhomogeneous and anisotropic media (possible with
existing finite element software); and (d) to avoid
iterative procedures.
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The picture-frame boundary S, and the contour
S are both chosen to include all inhomogensities and
anigotropies. The contour S is chosen to lie well
within the picture-frame bounéary' S,, thus sidestep-
ping the singularity problem of the Green's function.
Since field values on both S, and S are described by
the trial functions of the fihite eléement scheme, equa-
tion (1) provides the linear constraint which completes
the P.D.E. solution.

Examples

Results are given for three simple experiments,
demonstrating the scheme, andgiving some indication of
its potential.

For these examples, the z-directed electric vector
potential is used [7], yielding equipotential lines of
H , the contours being in the same direction as the
eiectric field.

Figure 3 shows a plot of equipotential contours
for a static problem with two conducting plates (infi-
nite in the z-direction) with a line dipole source
connected across the plates at =x = 0.

Figure 4 shows the real part of the solution ob-
tained (for the configuration of Figure 3), for the
source at zero phase at 19 GHz.

Figure 5 shows the real part of the solution for
an antenna type problem, with dielectric obstacles.
Here the plot is for the source at zero phase at 5 GHz.
Here two separate picture-frames are used, with a less
accurate second order polynomial approximation.

The illustrations are the same as plots obtained
by solving the basic finite element problem with "cor-
rect" (Dirichlet) potentials specified at the picture-
frame boundaries. In these examples, however, no
Dirichlet potentials were specified, the linear condi-
tions were obtained from the I.E. formulation, equation
(1).

The picture-frames are clearly snapshots of the
entire field. Theoretically, the borders of the pic-
ture-frames are transparent to the final solutions. In
practice, however, errors do occur. But the error at
the picture-frame boundary is no worse than the error
at any triangle interface.

More than one picture-frame may be used, and the
solution is continuous in each picture-frame, and
between them.

The scheme is clearly applicable to complicated
microstrip problems, e.g., the coupling of adjacent
microstrip lines. A microstrip example will be present-~
ed.

Computer times are within thirty percent of the
above-mentioned basic finite-element solution of the
equivalent, specified, Dirichlet problem. Accuracy
depends upon the numerical methods for integrating
equation (1), and also upon the parameters affecting
finite-element solutions, namely the size, and number
of elements, and the order of the polynomial trial
functions.

Conclusions

The present scheme permits placement of picture-
frames in regions where detailed analysis is required,
and saves work and computer storage for the remaining
"empty space". Nevertheless the solution anywhere can
be constructed from the picture-frame scolutions using
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a Green's function integration. The software at hand
permits analysis of inhomogeneous and anisotropic
regions, when these can all be placed in picture-frames
Of great algorithmic convenience is the fact that the
problem of singularity of the Green's function is side-
stepped by not evaluating potentials at source points.
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FIG. 1 THE PICTURE-FRAME AND ASSOCIATED CONTOURS

FIG. 2 A STATIC CAPACITOR PROBLEM AND SOLUTION USING
ONE PICTURE~FRAME
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FIG. 3 A HARMONIC CAPACITOR SOLUTION, GEOMETRY AS IN i;\f?\

FIGURE 3, USING ONE PICTURE-FRAME

FIG. 4 AN ANTENNA PROBLEM WITH DIELECTRIC OBSTACLES
AND SOLUTION USING TWO PICTURE-FRAMES
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